Apr. 23, 2013 ? Astronomy & Astrophysics is publishing Herschel observations of water in Jupiter's stratosphere. It is a clear remnant of the Shoemaker-Levy 9 comet impact on Jupiter nearly 20 years ago.
In July 1994, the comet Shoemaker-Levy 9 (SL9) hit Jupiter and left visible scars on the Jovian disk for weeks. This spectacular event was the first direct observation of an extraterrestrial collision in the solar system, and it was followed worldwide by professional and amateur astronomers.
SL9 was discovered orbiting Jupiter by astronomers David Levy and Carolyn and Eugene M. Shoemaker on March 24, 1993. It was the first comet observed orbiting a planet rather than the Sun. SL9 was found to be composed of 21 fragments. Soon after that, orbital studies showed that the comet had passed within Jupiter's Roche limit in July 1992. Inside this limit, the planet's tidal forces are strong enough to disintegrate a body held together by its own gravity, thus explaining SL9's fragmentation. Even more interestingly, the studies showed that SL9's orbit would pass within Jupiter in July 1994 and that the comet would then collide with the planet, with impacts in the southern hemisphere near 44?S latitude.
The SL9 impact and its subsequent scars on Jupiter were observed for weeks, but its chemical impact on Jupiter's atmosphere lasted even longer. Emission from water vapor was observed during the fireball phase of the SL9 impacts, but from that observation, it was difficult to assess how this would modify Jupiter's composition on the long term. In 1997, the ESA Infrared Space Observatory (ISO) detected water vapor in the stratosphere of Jupiter. At that time, astronomers suspected that it might be a consequence of the SL9 impact because comets are known to be water-rich bodies. However, there were other possible sources of water: interplanetary dust particles produced by cometary activity and asteroid collisions, icy rings, or one of the 60 Jovian satellites.
Nearly twenty years after this major impact, astronomers are still observing its consequences on Jupiter. T. Cavali? and his colleagues [1] observed Jupiter with the ESA Herschel Space Observatory, which is sensitive enough to map the abundance of water vs. latitude and altitude in the Jovian stratosphere. These observations, which have now been published in Astronomy & Astrophysics, show a clear north-south asymmetry in the distribution of water, with more water in the south. They indicate that 95% of the water currently observed on Jupiter comes from the comet.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Astronomy & Astrophysics.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- T. Cavali?, H. Feuchtgruber, E. Lellouch, M. de Val-Borro, C. Jarchow, R. Moreno, P. Hartogh, G. Orton, T. K. Greathouse, F. Billebaud, M. Dobrijevic, L. M. Lara, A. Gonz?lez, H. Sagawa. Spatial distribution of water in the stratosphere of Jupiter fromHerschelHIFI and PACS observations. Astronomy & Astrophysics, 2013; 553: A21 DOI: 10.1051/0004-6361/201220797
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/~3/CXcnp-4LL4M/130423102335.htm
enquirer national inquirer knicks vs heat kate walsh cnn debate equatorial guinea marine helicopter crash
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.