[ | E-mail | Share ]
Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society
They're ba-ack! But in a new disease-fighting role. Viruses that infect and kill bacteria used to treat infections in the pre-antibiotic era a century ago and in the former Soviet Union today may have a new role in preventing formation of the sticky "biofilms" of bacteria responsible for infections on implanted medical devices. That's the topic of a report in the ACS journal Biomacromolecules.
Marek Urban and colleagues explain that bacteriophages (literally, "bacteria eaters") were first used to treat bacterial infections in the 19th century. These viruses more than 1,000 different kinds exist attack disease-causing bacteria. The scientists focused on use of phages to wage "microbial warfare" on the films of bacteria that form on catheters, stents and other medical implants. These infections, which often involve antibiotic-resistant bacteria, strike more than a million patients annually in the United States alone, increasing hospital bills by almost $1 billion.
They describe attachment of phages to the surfaces of materials like those used in implanted medical devices, and evidence that the phages remain active, killing E. coli and Staphylococcus aureus. Those bacteria cause the most common hospital-acquired infections. The technology can attach phages to almost any surface, and is "a promising and effective means of not only combating antibiotic-resistant infections, but also the technological platform for the development of bacteria sensing and detecting devices."
###
The authors acknowledge funding from the National Science Foundation; the Sirrine Foundation; and the Mississippi INBRE, which is funded by the National Institute of General Medical Sciences, National Institutes of Health.
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Follow us: Twitter Facebook
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society
They're ba-ack! But in a new disease-fighting role. Viruses that infect and kill bacteria used to treat infections in the pre-antibiotic era a century ago and in the former Soviet Union today may have a new role in preventing formation of the sticky "biofilms" of bacteria responsible for infections on implanted medical devices. That's the topic of a report in the ACS journal Biomacromolecules.
Marek Urban and colleagues explain that bacteriophages (literally, "bacteria eaters") were first used to treat bacterial infections in the 19th century. These viruses more than 1,000 different kinds exist attack disease-causing bacteria. The scientists focused on use of phages to wage "microbial warfare" on the films of bacteria that form on catheters, stents and other medical implants. These infections, which often involve antibiotic-resistant bacteria, strike more than a million patients annually in the United States alone, increasing hospital bills by almost $1 billion.
They describe attachment of phages to the surfaces of materials like those used in implanted medical devices, and evidence that the phages remain active, killing E. coli and Staphylococcus aureus. Those bacteria cause the most common hospital-acquired infections. The technology can attach phages to almost any surface, and is "a promising and effective means of not only combating antibiotic-resistant infections, but also the technological platform for the development of bacteria sensing and detecting devices."
###
The authors acknowledge funding from the National Science Foundation; the Sirrine Foundation; and the Mississippi INBRE, which is funded by the National Institute of General Medical Sciences, National Institutes of Health.
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Follow us: Twitter Facebook
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-05/acs-ut050813.php
jessica simpson gives birth carrie underwood blown away chk ryan seacrest beltane ryan o neal dark knight rises trailer
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.